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Analysis of 3-D Metallization Structures by a
Full-Wave Spectral Domain Technique

Thomas Becks, Member, IEEE and Ingo Wolff, Fellow, IEEE

Abstract—A full-wave method for the investigation of mi-
crostrip- and coplanar-structures including 3-D metallization
structures is presented. The spectral domain analysis method
is used to calculate the S-parameters of unshielded microwave
components containing bond-wires and air-bridges. The gen-
eral formulation and the implementation procedure of the
method are described. The application of the theory is given by
a comparison of measured and calculated results for a spiral
inductor, including an air-bridge.

I. INTRODUCTION

OND-WIRES, via-holes and air-bridges are indis-
pensible to circuit design. They are used to ensure the
. biasing of active areas and to suppress multimode propa-
gation along the RF signal paths. The introduction of new
three-dimensional passive devices which yield higher
package densities reducing size, weight and cost neces-
sitate progress in analysis and circuit design. Most of the
commercially available software for the characterization
of passive structures is based on models, or can only han-
dle planar structures in the sense of a full-wave analysis.
Up to now, the full-wave analysis of such real three-di-
mensional structures could only be done using the finite-
. difference approach [1], [2] or the transmission line ma-
trix method [3]. ‘ )

The spectral domain analysis (SDA) technique [4], [5]
and the basically equivalent space-domain integral tech-
nique [6], [7] are well-known in the literature. These full-
wave analysis methods use roof-top functions as expan-
sion functions for the surface current density and have
proven to be flexible tools for the calculation of arbitrary
shaped planar passive microwave structures. Due to the
implementation of an FFT-algorithm and iterative meth-
ods, efficient S-parameter calculations of complex planar
circuits has become possible [8]. These methods can take
into account effects of multilayer structures as well as
losses due to surface waves, radiation and non-ideal strip
and backside metallization (if existing). But in general,
both methods only can handle structures with planar me-
tallizations.

Recently, two hybrid methods [5], [6] have been intro-
duced to overcome this major drawback of integral equa-
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tion methods applied to coplanar structures. In [5], some
3-D geometries are handled by first generating an
S-parameter representation of the planar structure. After-
wards the third dimension is included into the calculation
by applying suitable air-bridge descriptions in the sense
of a hybrid method. In a very similar approach in [6] the
frequency equivalent circuit of the planar discontinuity
without the air-bridge is derived using SDA method.
Then, the circuit is modified by using a quasi-static
lumped element model of the air-bridge. Both formula-
tions are looking for the third dimension of the structure
under consideration only in the sense of a segmentation
approach. Air-bridges at internal ports cannot be included
into the calculation procedure. In [9] the spectral domain
method in connection with image theory is used to cal-
culate 3-D coplanar structures. This approach can be used
for coplanar circuits only.

In this paper, air-bridges and bond-wires are included
in a full-wave analysis using the spectral domain tech-

. nique to analyze microstrip structures. Electromagnetic ef-

fects due to electric currents in the horizontal and vertical
directions are considered in the approach. This is done by
formulating the dyadic Green’s function for currents in
the horizontal and vertical directions (Section II-A). For
coplanar structures, magnetic planar surface current den-
sities can be used to restore the electric fields in the slots.
The dyadic function is formulated either for an open or
shielded structure, so antenna problems can be handled
very easily. Section II-B presents the description of hor-
izontal and vertical directed parts of the bridge by surface
currents or either a volume current formulation. After in-
troduction of matched sources, an integral equation can
be formulated and solved by the method of moments in
connection with direct or iterative solutions for the re-
sulting system of linear equations (Section H-C). Section
II-D gives insight into the S-parameter extraction tech-
nique used here. In Section III, numerical results for the
scattering parameters of microstrip discontinuities such as
bonded gaps and rectangular spiral inductors are dis-
cussed and compared with available measurements and
FDTD results.

II. THEORY
Fig. 1 shows the geometry of a typical 3-D microstrip
structure, a rectangular spiral inductor on a dielectric sub-
strate backed by a metallization. The spiral inductor con-

0018-9480/92$03.00 © 1992 IEEE



2220

i

o7

/e

Fig. 1. Schematic view on a rectangular spiral inductor in microstrip tech-
nique.
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tains two turns and a bond-wire or air-bridge connects the
center with the outgoing port. The substrate is assumed
infinitely wide in the x- and y-directions. The structure is
unshielded.

A. The Dyadic Green’s Function

The full-wave analysis of a microstrip discontinuity be-
gins with the derivation of the Green’s function of a Her-
tzian dipole in a layered medium (Fig. 2). In [10] an it-
erative algorithm has been developed to define
electromagnetic fields due to a current element in the hor-
izontal direction. (J = J,
layered structure. An extension to vertically directed cur-
rent elements (J = J; + J,e) was introduced in [11].
Outside the source region, the field consists of a super-
position of transverse electric (TE) and transverse mag-
netic (TM) waves with respect to the interface normals.
Because of this fact, decomposing the field using the
z-components of the electric and magnetic vector poten-
tial (F and A) is useful to look for the problem as a trans-
mission line problem in z-direction. Details of the deri-
vation of the dyadic Green’s function in the spectral
domain (superscript ") are given in the references [10],
[11]. From the linearity of the problem it follows that the
electric field E; in each layer i excned by a current density
J can be calculated as:

Ei(x7 Y, Z) = (472)_1 S S S GE[,J(kxa kys Z - ZO)
0 kx ky

s T (kyy Ky, zo) e XTI gl dle dzg. (1)

- Assuming a two layer case (Fig. 1), the first two columns
of the dyadic Green’s function for the arca of interest
z > d are well-known. In addition the third
column—E-field excited by a vertical dlrected current—is
given by

‘ NE 5 = ky l: Qs ) ol 2P2d, ~jB2z +20)
v 2wey LT,k ky)
+ sign (z — ZO)e"'B”Z‘Z‘)'}, 2

= Jie, + J;e) inside a multi-
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Fig. 2. Geometry of a generalized multilayer conﬁgﬁfation of dielectric
substrates.

and

j262de —jB2(z + z0)

c ﬁ+@[qm@>
Fode & 2("6262 Tm(kxa ky)

-+ e—jﬁzlzzol:‘ — M’ (3)
Jwey

where the following terms are defined:

O(k,, k) = ki€, By cos (B,d) — jkiBy sin (Bid) (4)

T, (ke ky) = ke, 8, cos (8,d) + jk3B, sin (8,d)  (5)
BI = koe, — ki =k (6)
By = ki — ki — k> ™
and
u=x,y. A (8)

Physical phenomena like losses due to surface waves, ra-
diation, and non-ideal dielectric materials are taken into
account. Especially surface waves and radiation contrib-
ute to power loss for the structure under consideration.
The zeros of T, in the denominators of (2) and (3) cor-
respond to the TM surface wave modes.

B. Current Expansion Functions

The next step of the procedure is to represent the cur-
rents on the metallization structure approximately by a set
of expansion functions with unknown coeflicients. The
choice of current expansion functions can be divided into
two parts:

(a) Horizontally directed parts of the metallization
structure can be described approximately by sur-

- face current densities. After introducing a rectan-
gular uniform mesh (Fig. 3), representation of the
surface currents is done by a “‘rooftop’” distribu-
tion. Rooftop functions give a piecewise linear ap-
proximation to the current in the direction of cur-
rent flow and a step approximation lateral to the
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Fig. 3. Current-discretization procedure for a bond-wire structure with
horizontal cross-sectional area equal to one cell.

current flow. The mathematical expression of those
rectangular subdomain functions is

— nAy/2
Js.0m ) = R <y_"y_/_>
. Ay
X — mAx
T
< Ax >ex, ©)
where
Ay
1, = =
Ry - Iyl =3
s y )
b x| = Ax
Ax’
T(x) = (10)
0, x| > Ax

( y-directed current by interchanging m with » and
Ax with Ay on the right hand side of (9)).

(b) Vertically directed parts of the metallization struc-
ture can be described approximately by volume
current densities. As shown in Fig. 3, volume cur-
rents in the vertical direction represent a bond-wire
structure with horizontal cross-sectional area equal
to one cell. A local mesh refipement can be used to
reduce the-diameter of this part of the bridge. The
mathematical expression for this step approxima-
tion is

. fﬂ y — nAy/2
bon - (L) (222

z—d—iAz/2
cR|—————"—}e,. 11
With the help of these two types of expansion functions
provided above, the current distribution on any 3-D mi-
crostrip discontinuity can be expanded effectively. Even
curved planar metallization structures can be handled by

a staircase approximation [12]. Transmission lines con-
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(end of the
feeding line)

(lower strip metallization)

Fig. 4. Illustration of the placement and formulation of an impressed source
current distribution Jg ;. Located at the end of the feeding lines (I = 0)
which are connected to the structure under consideration, the current dis-
tribution of the source is precomputed by solving an eigenvalue problem.

nected to the structure under test are terminated by open-
ends holding he current distributions of impressed sources
(Fig. 4). So the entire region of interest has a finite di-
mension where only subdomain expansion functions are
required. A special treatment of such open-end discontin-
uities introduced, is presented in the next sections.

C. The Integral Equation/Moment Method Solution

With (1), the electric field for z > d is constructed from
the unknown currents described above by replacing

J k.. ky, 20) = jS,l(k,w ky)5(20 —d)
+ js,u(kx’ ky)é(zo —-d - h)
+ J.(ky, Ky, 20), (12)

with: subscript S, = lower planar, subscript S, = upper
planar, and subscript z = vertically directed part of the
metallization. Introduction of matched sources [13] at the
ends of the lines feeding the structure under test lead to
an excitation problem. By choosing the impressed source
distributions Jg, ;»,, in modal form, the continuity of the
current density from the sources to the feed lines is en-
sured with a minimum of disturbance. From the surface
current point of view the end of the line looks like a
matched load: The information about the current distri-
bution of a single mode is precomputed by the analysis of
the undisturbed lines as an eigenvalue problem. Fig. 4
illustrates the placement and the formulation of such cur-
rent-matched sources by depicting the longitudinally di-
rected part of the impressed current distribution.

A reaction J,.,. of the system has to compensate the
portion of the source field tangential to the planar, hori-
zontally directed part of the metallization. In addition, the
total electric field within the vertically directed parts of
the metallization must be zero. In connection with (1) and
(12), a Fredholm integral equation of the first kind results

Eg(J) + Eg(J) + E.(J) = o, (13)



2222

where

J = JS[,zmp + JS[,reac + JSu,reac + Jz,reuc (14)

with § indicating planar metallization and z indicating
vertical directed parts again.

The next step is the discretization of the electric fields
tangential to or in the metallization in the sense of the
well-known Galerkin procedure. This step projects the
Fredholm integral equation ((13)) onto a system of linear
equations ‘

ZS], St ZS/. Su ZS[, z J St VS/, St.ump
Zs, s Zs.s, Zso||JIs| = | Vsusim (15)
ZZ, M ZZq Su ZZ, < JZ VZ, St mp

Each submatrix in the equation above represents a set of
mutual impedances between expansion functions and test-
ing functions. For example, a typical matrix element of
the Zs, s-matrix looks like :

4 \2
2= (a) 1L G0

1. Ax\TT1 . Ay\T
Jem (63 [ ()]

% ejk,r(m—M)Axejk_v(n~N)Ay dkx dk) (16)

From (16), it is evident that all Z-matrix elements can be
calculated by a 2D backward Fourier transform. Any sub-
matrix in (15) can be performed efficiently by application
of FFT techniques. In order to get correct results by using
FFT, two facts have to be taken into account:

(a) The Nyquist theorem k, . = 27 /Au, u = x, y
must be fulfilled.

(b) A fine sampling rate around the poles of the Green’s
function and within an area k2 + ki < ki must be
chosen, in order to get the influences of surface
waves and radiation into the calculation.

Because of these facts, FFT-dimensions could become
large. To overcome these disadvantages, two different
ideas have been used:

a) No sampling points have been located near to the
poles. The interpolation or the translation theorem
has been used.

b) Surface wave effects have been included by using
residue theory around the poles to get additional
parts to the “‘FFT’’ integral.

After performing a solution of the linear system with it-
erative methods like the conjugate gradient method [14]
or the Lanczos algorithm [15], which is better suited to
handle multiport problems, one can obtain the coefficients
in Jg, Js,. and J,. The most time consuming part of an
iterative algorithm is the matrix-vector-multiplication
needed once or twice each iteration step. The
Z;, s-matrix in eq. (15) contains four submatrices, each of
block-Toeplitz type, Toeplitz submatrices within. Be-
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cause of this fact, the main part of the matrix-vector-mul-
tiplication ZJ can be handled as a convolution. Therefore
an cfficient usage of 2-D FFT algorithm becomes possible
again [16].

D. S-Parameter Extraction

Efficient identification of discontinuity parameters is
important to reduce the numerical effort for analyzing
complex structures. The S-parameter extraction technique
used here is similar to a method described in [1] for the
calculation of generalized scattering parameters with a fi-
nite-difference method.

On an infinitely long, longitudinally homogencous
transmission line, in each cross-sectional plane the trans-
verse electromagnetic fields can be described as a super-
position of line modes. In a mathematical sense these
modes form a complete set of functions,

M
Ew, v, 1) = 2_]1 tNZbae T+ bYe) (A7)

M
H G, v, 1) = 2 th(NZp)la"e ™" = bre™™),

(18)

with: t%, ¢} the transverse vector functions of the trans-
verse coordinates u and v, v’ the propagation constant,
and Z7 the wave impedance of the »-th mode of the line.
a” and b" are the amplitude coeflicients of the »-th for-
ward and backward travelling line mode, respectively.

Fig. 5 shows a schematic view on an N-port structure
under test. Each port is connected to a line and fed by a
current source. In order to look for the generalized scat-
tering parameters of the structure, reference planes at /, ,
and “‘test’’ planes at /,; are introduced (i = number of
port, connected line). After introduction of impressed
current source distributions, (15) can be solved for the
unknown current amplitude coefficients. With the knowl-
edge of the current distribution within the structure, the
clectromagnetic fields all over the space can be calcu-
lated. Especially the resulting transversal clectromagnetic
fields in the cross-sectional planes at [, , (Fig. 5) are de-
termined. Each of these transverse electromagnetic fields
can be expressed as shown in (17) and (18)

MI
4 —_—
Ej (0, b)) = 2 tp NZk, lal"e o

+ b;/,"evl"(lm—lr,z)]’ (19)

M,
Hyy 0,00 = 20 5 (NZk ) ' ap e v e
— b;’ynev,(lz.z lm)]’ (20)

with: subscript i = number of line, superscript # = num-
ber of excitation, and superscript » = number of mode.
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Fig. 5. Schematic representation of the excitation and extraction technique
to derive N-port scattering parameters. n = number of excitation, i = num-
ber of port, » = number of mode, [, , = location of extraction plane, and
[,,, = location of reference plane.

The next step is a test procedure described as

SS [EL.: X th:] - n,;dA
Ara
Ml;
=2 H [tz % th,] - ny, dA
Ao

. ‘/Z;,i [a;{,ne—vf(lr,z—lr,z) + b;f,ilejf(l:..—lr.x)], (21)

SS [H;lr,i\X tgi] - m; dA

A1
Ml
= Zl g\g [tll)-l.z X t%,l] : nl,tdA
y=
Atr,l )
. ( /Z?J.)_l [allll,’le_’)’:’(lt‘z_lr,z) + b;’.ne’}/;}(lt.t_[r.z)]‘

(22)

The integrals in (21) and (22) can be calculated analyti-
cally in the direction perpendicular to the groundplane.
Application of Parseval’s theorem transforms the integra-
tion in the other direction into the spectral domain. Here
efficient usage of FFT algorithms becomes possible again.
The resulting equation system can be solved for the un-
knowns a!"" and b}"".

In general for an N-port problem, the procedure de-
scribed above has to be repeated for N linear independent
excitations in order to form a set of linear independent
equations in the sense of

[bl,"-,b","',bN]=S[a1,--',a",---

n = Number of excitation,

, a1,
(23)

which can be solved for the unknown scattering matrix S.
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It is important to note that the modes which form a
complete set of functions in the case of an infinitely long
line, do not do so in (19) and (20) due to the influence of
surface waves and radiation excited by the N-port struc-
ture. This is in general a problem in defining S-parameters
in planar, open circuits. Because of the choice of a Gal-
erkin test procedure in (21) and (22) the coefficients a;*"
and b;" are calculated in the sense of a least square ap-
proximation. This looks like the best possible choice.

III. RESULTS

In the numerical results shown here, the considered mi-
crostrip discontinuities are printed on a 635 um Al,O4
substrate (¢, = 9.8) with a conductor width of 625 um or
635 um. The characteristic impedance of such lines is ap-
proximately 50 Q. '

Fig. 6 shows the first structure under consideration. It
is a simple test structure, an interconnection of two mi-
crostrip lines by a bond-wire. The gap width is g = 635
pum and the bridge height is A = 200 um. The
S-parameters of this structure are plotted in Fig. 7. The
SDA results (symbols X, +) are compared to those cal-
culated with the finite-difference time-domain method [18]
applied to exactly the same structure using two different
discretizations. For the spectral domain calculation the
width of the line is discretized with three elements. The
first FDTD result (curves labeled with FDTD; in Fig. 7)
is calculated with the same discretization. A good agree-
ment between both methods, especially in the phase
curves, is obtained. In the case of a discretization with
nine elements for the FDTD-method (curves labeled with
FDTD, in Fig. 7), the curves for the magnitudes show a
better matching. This is due to the coarseness error in-
cluded in the FDTD calculation [17]. The next figure (Fig.
8) illustrates the longitudinal component ( y-directed) of
the surface current density around the gap of the same
structure for a frequency of f = 10 GHz. The current de-
creases to the end of the lines and goes up into the bond-
wire structure.

In a next step, the influence of the bridge height and
the gap width on the S-parameters of the same structure
has been tested. These investigations are very similar to
those in [1]. Fig. 9 shows the influence of the bridge
height varying from A = 25 um to £ = 250 pum. As ex-
pected, the magnitude of the reflection coeflicient S;; in-
creases when increasing the bridge height. The next figure
(Fig. 10) shows the influence of the gap width, varying
from one time the strip width up to four times the strip
width. Again the magnitude of the reflection coeflicient
S11 increases according to the gap width.

In order to compare the SDA results with measured re-
sults, a spiral inductor—layout in Fig. 11—has been built
and measured. The spiral inductor contains two turns sep-
arated by a gap of width s = 312.5 um. The connection
was an air-bridge prefabricated of a circular wire with di-
ameter 317.5 um with a defined length of 4.0775 mm.
For the numerical analysis, the vertical directed part of
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Fig. 6. Schematic view on the interconnection of two microstrip lines by
a bond-wire, ¢, = 9.8, d = 635 um, w = 635 um, g = 635 pm, @ = w'
= 211.6 um, and 2 = 200 um.
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Fig. 7. S—pararheters for the interconnection of two microstrip lines by a
bond-wire. Geometry and material parameters as in Fig. 6 SDA results
(symbols X, +), FDTD results (lines , ———). Top: Magnitudes of
811, S»y. Bottom: Phases of Sy, S,;.

the bridge was modeled as a rectangular wire whereas the
horizontal directed part was modeled as a flat strip (Fig.
11). The bridge height was 2 = 317.5 um which was ap-
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Fig. 8. Longitudinal current density around the bounded-gap-structure
shown in Fig. 6. Frequency is 10 GHz.
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Fig. 9. S-parameters of the structure shown in Fig. 6 for different bridge
heights, » = 25, 50, 75, 100, 150, 200, 250 um. Top: Magnitudes of S,,,
S,;. Bottom: Phases of S, S,;. ’ '

proximately the height of the lower edge of the horizontal
part of the original circular wire. Impressed current source
distributions and extraction planes have to be introduced
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Fig. 12. Reflection coefficient §,, of the structure shown in Fig. 11.
( ) calculated, (——-) measured. Top: Magnitude of §,;. Bottom: Phase
of §i1- :

for the calculation. The connected feeding lines at port 1
and port 2 have a length of 3.75 mm and 3.75 mm re-
spectively. According to the Fig. 11, reference plane lo-
cation of port 1 and 2 is at y/Ay = 24 and y/Ay = 57
respectively.

This structure was first introduced by [2]. The large
geometrical dimensions have been chosen, because it was
intended to have all the resonant phenomena of the com-
ponent in a frequency range, that allows to verify the sim-
ulation by measurements. Smaller dimensions lead to
higher resonant frequencies, but they don’t influence the
simulation and its accuracy. The strip width was discre-
tized with four elements which results in a total number
of Ny = 1305 unknowns. Figs. 12-14 demonstrate the
excellent agreement of the analysis and measured results.
Even the phase responses, which has been a critical aspect
in nearly all other calculation methods, is predicted with
a high accuracy by the SDA mecthod. The calculated
curves consist of nearly 300 frequency points. Figs. 15
and 16 illustrate the surface current density within two
detailed areas of the splral inductor at a frequency of
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Fig. 15. Current distribution in the structure shown in Fig. 11
(f = 8.0 GHz). Detail 1.

.

Al .
N ey =

Fig. 16. Current distribution in the structure shown in
(f = 8.0 GHz). Detail 2.

Fig. 11

f = 8 GHz. Some markers (1-3) have been introduced to
draw attention to some remarkable details of the surface
current flow. The marker 1 indicates the current flow from
the planar metallization into the bond-wire structure. Next
marker—marker 2—indicates disturbance of current flow
on the lower metallization due to the influence of the up-
per part of the bridge 317.5 um above. The current under
the bridge, -at a relative minimum for this frequency,
changes from longitudinal direction nearly into pure lat-
eral direction forced by the strong electromagnetic cou-
pling to the air-bridge. The marker 3 points on some mi-
crostrip edges with typical current flow around the corner.

IV. CoNcLUSION

In conclusion, the modified SDA method described here
is a powerful tool to calculate 3D-microwave structures.
It is possible to look for the influence of parameter vari-
ations as well as for coupling effects and losses due to
non-ideal metallization or radiation within complex struc-
tures by application of this method. In connection with
the S-parameter extraction technique described and with
extensive use of FFT algorithm the method allows an ef-
ficient handling of 3D multiport problems. Even for com-
plex structures, as the analyzed rectangular inductor, the
method is very accurate compared to measurements.
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